REGENETEN^{*} Bioinductive Implant System

The right solution for your patients

- Stimulates the body's natural healing response to support new tendon growth and disrupt disease progression²
- Clinically proven to increase tendon thickness^{1,13}
- Delivers excellent outcomes in patient satisfaction, recovery, and pain scores¹

REGENERATES TENDONS.^{1,2} **REVOLUTIONIZES INTERVENTION.**

Ordering information

Implants	
Order #	Description
2169-3	Large Arthroscopic Bioinductive Implant (1)
2169-2	Medium Arthroscopic Bioinductive Implant (1)
Anchors	
Order #	Description
2503-A	Bone Anchors (3) with Arthroscopic Delivery System
2504-1	Tendon Anchors (8)
Accessory Devices	
Order #	Description
4173-1	Tendon Marker (2)
4402	Tendon Stabilizing Guide (1)
2503-S	Bone Anchor (1)

Another innovation from Smith & Nephew Shoulder Solutions.

T +978 749 1000

+1 800 343 5717

US Customer Service:

Sports Medicine Smith & Nephew, Inc. 150 Minuteman Road Andover, MA 01810

www.smith-nephew.com °Trademark of Smith & Nephew. ©2018 Smith & Nephew. All rights reserved. Printed in USA. 13508 V1 02/18

Supporting healthcare professionals for over 150 years

References

1. Schlegel TF, Abrams JS, Bushnell BD, Brock JL, Ho CP. Radiologic and clinical evaluation of a bioabsorbable collagen implant to treat partial-thickness tears: a prospective multicenter study. J Shoulder Elbow Surg. 2017. doi: http://dx.doi.org/10.1016/j.jse.2017.08.023. 2. Bokor DJ, Sonnabend D, Deady L et al. Evidence of healing of partial-thickness rotator cuff tears following arthroscopic augmentation with a collagen implant: a 2-year MRI follow-up. MLTJ. 2016;6(1):16-25. 3. Washburn R, Anderson TM, Tokish JM. Arthroscopic rotator cuff augmentation: Surgical technique using bovine collagen bioinductive implant. Arthroscopy Techniques. 2017:6(2);e297-e301. 4. Mather RC, Koenig L, Acevedo D et al. The societal and economic value of rotator cuff repair. J Bone Joint Surg Am. 2013;95:1993-2000. 5. Lin JC, Weintraub N, Aragaki DR. Nonsurgical treatment for rotator cuff injury in the elderly. Am Med Dir Assoc. 2008;9(9):626-32. doi: 10.1016/j.jamda.2008.05.003. 6. Yamanaka K and Matsumoto T. The joint side tear of the rotator cuff: A followup study by arthrography. Clinical Orthopaedics and Related Research. 1994: 304,68-73. 7. Keener JD, Galatz LM, Teefey SA et al. A prospective evaluation of survivorship of asymptomatic degenerative rotator cuff tears. J Bone Joint Surg Am. 2015;97:89-98. 8. Bishop J, Klepps S, Lo IK, Bird J, Gladstone JN, Flatow EL. Cuff integrity after arthroscopic versus open rotator cuff repair: A prospective study. J Shoulder Elbow Surg. 2006;15(3):290-299. 9. Heuberer PR, Smolen D, Pauzenberger L et al. Longitudinal long-term magnetic resonance imaging and clinical follow-up after single-row arthroscopic rotator cuff repair. Am J Sports Med. 2017;45(6):1283-1288. 10. Henry P, Wasserstein D, Park S, et al. Arthroscopic repair for chronic massive rotator cuff tears: A systematic review. Arthroscopy. 2015;31(12):2472-80. 11. Chen Q. Proof-of-concept finite element modelling of effect of tissue induction on rotator cuff tears. Material and Structural Testing Core, Mayo Clinic, Rochester, MN. 12. Van Kampen C, et al. Tissue-engineered augmentation of a rotator cuff tendon using a reconstituted collagen scaffold: A histological evaluation in sheep. MLTJ. 2013;3:229-235. 13. Bokor DJ, Sonnabend D, Deady L et al. Preliminary investigation of a biological augmentation of rotator cuff repairs using a collagen implant: a 2-year MRI follow-up. MLTJ. 2015;5(3):144-150

Biologically stimulates rotator cuff tendon growth¹

- Demonstrated clinical efficacy
- Excellent safety profile¹
- Impressive patient outcomes¹

>, smith&nephew **REGENETEN**^{*} **Bioinductive Implant**

Supporting healthcare professionals

Changing the course of rotator cuff disease.

Rotator cuff disease is a significant and costly problem²⁻⁴ that causes ongoing pain and limits patients' mobility.⁵ Progressive in nature, small tears tend to grow in size and severity over time, eventually requiring surgery.¹⁻³

- Up to 80% of partial-thickness tears increase in size within 2 years⁶
- Untreated rotator cuff tendinosis can progress to a partial- or full-thickness tear⁷
- Larger tears requiring surgery tend to re-tear over 40% of the time⁸⁻¹⁰

REGENETEN[°] Bioinductive Implant

Now you can disrupt rotator cuff disease progression biologically¹

The REGENETEN Bioinductive Implant stimulates the body's natural healing response to support new tendon growth and disrupt disease progression.^{1,2} Derived from highly purified bovine Achilles tendon, it creates an environment that is conducive to healing.^{1,2}

Biologically improve healing

- Proprietary, highly porous implant design facilitates the formation of new tendon-like tissue^{1,2}
- New tissue reduces the peak strain at the site of the tear¹¹
- Gradually absorbs within 6 months and leaves a laver of new tendon-like tissue to biologically augment the existing tendon¹²

Implant in situ

12 months Post-Op

Addressing disease progression at every stage

Natural Progression of Rotator Cuff Disease

Proven results. Positive outcomes.^{1*}

Demonstrated clinical efficacy

- Induction of new tendon-like tissue in all patients (N=33)
- Mean increase of tendon thickness of 2.2 mm (P < 0.0001) at 3 months
- of at least 1 grade⁺

- Reduction in defect size

Excellent safety profile

- No foreign body/inflammatory reaction

*Results from a prospective multi-center study of patients with partial-thickness tears. Patients had chronic, degenerative, intermediate grade (n=12) or high grade (n=21) partial-thickness tears of the supraspinatus tendon. The REGENETEN Bioinductive Implant was attached following arthroscopic subacromial decompression without repair. Clinical outcomes were assessed pre-op and at 3 and 12 months post-op using American Shoulder and Elbow Surgeons (ASES) and Constant-Murley (CM) scores. Post-op tendon healing and thickness was assessed with MRI +In 31 (94%) patients over 12 months.

±ASES pain score improved from 4.2 ± 0.4 standard error of mean (SEM) at baseline to 0.6 ± 0.2 (SEM) at 1 year.

• No implant-related complications

Impressive patient outcomes

- High patient satisfaction (94%) after 1 year
- Rapid recovery: average 23 days of sling time
- Significantly improved ASES pain score at 1 year (P < 0.0001)[‡]